Nachweisreaktionen

  • 2.1.5 Nachweis von Alkenen (Doppelbindung)

    Versuch: Ein Erlenmeyerkolben wird unter Wasser mit 250 ml Ethen gefüllt, anschließend werden 0,5 ml Brom dazugegeben und mit dem Stopfen verschlossen.

    Alternativ: Hexen + Bromwasser (VORSICHT FALLS MAN BROM NIMMT ⇨ heftige Reaktion)

    Beobachtung:
    Die Bromfarbe verschwindet; Volumenabnahme; der Erlenmeyerkolben wird warm; es entsteht ein flüssiges Produkt, die Dichte ist größer als 1 g/cm³.

    Auswertung:
    Zwei Hypothesen:

    I) Substitution:

     02 01 05 brom und ethen substitiution

    II) Addition:

     02 01 05 ta reaktionsgleichung brom und ethen


    Ergebnis

    Bei der Reaktion Ethen + Brom entsteht (fast) nur ein Reaktionsprodukt. „Bromwasserstoffnebel“ waren kaum zu sehen. Es fand somit eine Addition statt.

    Additionsreaktionen: Reaktionen bei denen sich zwei Moleküle zu einem Molekül vereinigen! Es kommt dabei zur Anlagerung von Atomen oder Atomgruppen an Doppelbindungen (Mehrfachbindun-gen).

    Reaktionsmechanismus: AE-Reaktionen (elektrophile Addition)

    = typische Reaktion von Alkenen

    02 01 05 ta elektrophie addition mechanismus mit wasser

  • 4.1 Monosaccharide

    4.1.1 Glucose - Traubenzucker

    Vorkommen: Trauben, Früchte

    a) physikalische Eigenschaften

    • Aggregatzustand: fest; Schmelzpunkt um 146°C; weiteres Erhitzen führt zur Zersetzung. 
      Folgerung: Glucose besitzt hohe zwischenmolekulare Kräfte (Vermutung: H-Brückenbindung) und van-der-Waals-Kräfte. 

     

    • Löslichkeit
      Glucose löst sich sehr gut in Wasser (67g/100ml), dagegen löst sich Glucose nicht in Benzin. Eine wässrige Glucoselösung zeigt (fast) keine elektrische Leitfähigkeit.
      Folgerung: Glucose enthält polare Gruppen, die mit Wasser H-Brücken eingehen können. Es entsteht keine Ionen.

    b) qualitative Elementaranalyse

    Reaktion von Glucose mit konzentrierter Schwefelsäure:

    Versuchsskizze Glucose mit Schwefelsäure im Reagenzglas unter Entstehung von Zuckerkohle

    Folgerung: Glucose enthält Kohlenstoff.
    Mitteilung: Glucose enthält neben C noch H und O.


    c) quantitative Elementaranalyse
    Die quantitative Elementaranalyse nach Liebig ergibt:
     3,6 g Glucose liefert bei der Verbrennung:

    • 5,28 g CO2
    • 2,16 g H2O


    Glucose besitzt folgende Summenformel: CnH2nOn
    Von dieser allgemeinen Formel [C(H2O)]n leitet sich die Bezeichnung Kohlenhydrate ab.
    Hinweis: Im Heft folgen jetzt die Arbeitsanleitung zur Strukturaufklärung (mit den diversen Experimenten). Hier folgt jedoch gleich das Ergebnis. Die Reaktionsgleichungen von Fehling und Tollens-Reagenz finden sich dann auf anderen Seiten. 

    Ergebnis:
    Glucose ist ein Polyhydroxyaldehyd, genauer Pentahydroxyhexanal, ein Aldehydzucker oder Aldose.
    Aldose = Monosaccharide, mit terminaler Carbonylgruppe (Aldehyd)
    Ketosen = Monosaccharide, mit nicht endständiger Carbonylgruppe (Keton).


    Fischerprojektion:
    Es gelten folgende Regeln:

     Glucose in der Strukturformel als Fischer-Projektion

    • Die C-C-Kette wird senkrecht geschrieben.
    • Die am höchsten oxidierte Gruppe steht oben.
    • Die C-C-Bindungen sind bei jedem C-Atom nach hinten abgewinkelt;
    • dann zeigen die waagrechten Bindungen nach vorne;
    • Bei der offenen Glucoseform gibt es vier asymmetrische C-Atome ==> 24-Isomere;
    • Die Bezeichnung erfolgt nach dem untersten C-Atom (hier C5-Atom). 
    • Da die OH-Gruppe rechts steht ==> D-Konfiguration.
    • ==> D-(+)-Glucose 

     


    (L-Glucose erhält man nur synthetisch)

    Bildung von Glucose:
    Bei Pflanzen (Fotosynthese) und Tieren (durch Abbau von anderen Molekülen).

    Fotosynthese:
    Fotosynthesegleichung: 6 CO2 + 12 H2O reagieren unter Licht zu Glucose + 6 O2 und 6 H2O

    60 Mrd t Kohlenstoff werden dabei im Jahr gebunden.

    Abbau von Glucose:
    Bei der Zellatmung (Pflanzen, Pilze, Tiere)

    Reaktionsgleichung der Zellatmung

  • 4.1.5 Fructose = Fruchtzucker

    Vorkommen: in Früchten, Nektar, Honig; vor allem industriell hergestellte Fructose
    Eigenschaften: kristallisiert schlecht aus wässriger Lösung → sirupartige Flüssigkeit. 

    Summenformel: C6H12O6
    Fructose ist somit ein Strukturisomer der Glucose.

    a) Seliwanow-Probe 

    Versuchsaufbau: Seliwanow im Wasserbad; Fructose wird rosa / rot; Glucose und Seliwanow bleiben farblos

    Nachweis, ob es sich bei Kohlenhydraten um Ketosen oder Aldosen handelt.
    Ketose --> roter Farbstoff
    Aldose --> keine/langsame Reaktion --> farblos


    Info: Die Seliwanow-Reaktion ist ein Nachweis für Ketohexosen in der Furanose-Ringform. Da sie im sauren Milieu abläuft, kommt es nicht zur Keto-En(di)ol-Tautomerie. Mit Glucose fällt die Probe deshalb negativ aus.

    Strukturformeln: Offenkettige und Ringbildung durch die Halbacetalbildung: 

     Strukturformeln der Fructose 

     

    Fructose bildet wie Glucose Anomere. Neben der Kettenform des Moleküls enthält das Gleichgewicht zwei anomere Pyranosen ( β-D-Fructose und α-D-Fructose; Halbacetalbildung mit dem C5-Atom) und zwei anomere Furanosen ( β-D-Fructose und α-D-Fructose; Halbacetalbildung mit dem C6-Atom).   


    Alle anomere Fructose-Moleküle in Fischer- und Haworth-Projektion





    Keto-Enol -Tautomerie

    Versuche mit Fructose: 

    • Fehling →  positiv
    • Tollens →  positiv
    • GOD (Glucose-Nachweis) + Lauge →  positiv

    Funktioniert nicht mit einer Ketogruppe, da diese nicht weiter oxidiert werden kann. Grund, warum die Nachweise trotzdem positiv verlaufen: Innermolekulare Umlagerung unter Protonenwanderung und Elektronenverschiebung. 

    Strukturformel - Reaktionsgleichung der Keto-Enol-Tautomerie in Lewis-Schreibweise 

     Genauer: 

    Mechanismus der Keto-Enol-Tautomerie in Lewis-Schreibweise

     

    Glucose und Fructose stehen im Gleichgewicht (Glucose überwiegt); bei der Oxidation von Glucose wird Glucose aus dem GG entfernt →  Fructose wird aufgebraucht.

  • 4.2 Disaccharide

    4.2.1 Maltose (Malzzucker)

    Vorkommen: Entsteht durch unvollständige Hydrolyse von Stärke .

    Stärke  -----(Enzym: Amylase)----->   Maltose

    Verwendung: Gerstenmalz (Bier brauen)

    Eigenschaften:

    • Fehling positiv
    • zeigt Mutarotation
    • besteht aus 2 α-D-Glucoseeinheiten, α-1→4 glycosidisch verknüpft.


    Strukturformel in Haworth-Projektion - Verknüpfung

    Schema bzgl. reduzierender und nicht reduzierender Zucker



    4.2.2 Cellobiose 

    Vorkommen: Verdauungsprodukt von Pflanzenfressern aus Zellulose

    Eigenschaften:

    • Fehling positiv
    • zeigt Mutarotation
    • besteht aus 2 β-D-Glucoseeinheiten, β 1 → 4 glycosidisch verknüpft.

    Verknüpfung von beta-Glucose zu Cellobiose



    4.2.3 Lactose (Milchzucker)


    Vorkommen: Muttermilch von Säugetiere (1,5 – 8 %)

    Eigenschaften:

    • Fehling positiv
    • zeigt Mutarotation
       Hydrolyse ergibt β-D-Glucose und β-D-Galactose, β-1 → 4 glycosidisch verknüpft.

     Bildung von Lactose aus Glucose und Galactose









  • 4.2.4 Saccharose (Rohr- oder Rübenzucker)

    Vorkommen: Haushaltszucker, Kristallzucker, Zuckerrüben (18-20%), Zuckerrohr (16-22%)

    Summenformel: C12H22O11  →  Dissaccharide (2 Moleküle Monosaccharid minus 1 Molekül Wasser)

    Physikalische Eigenschaften:

    • hoher Schmelzpunkt (ca. 180°C)
    • harte Kristalle

    Folgerung:

    • Molekülgitter mit vielen H-Brückenbindungen
    • sehr leicht löslich in Wasser
    • eine Rohrzuckerlösung ist zähflüssig  → viele Wasserstoffbrücken

     

    Chemische Eigenschaften:

    • Fehling negativ
    • zeigt keine Mutarotation

    Schülerexperiment: Nach einer Hydrolyse mit verdünnter Salzsäure:

    • Fehling positiv
    • Saccharose besteht aus α-D-Glucose und β-D-Fructose
    • Beide Monosaccharide sind α-1→1-glycosidisch verknüpft   

     

    Lewisformel Saccharose aus Glucose und Fructose 

     

    Schema Saccharose - blockiertes anomeres C-Atom 

    Spaltung der Saccharose mit verdünnter Salzsäure = saure Hydrolyse

     Schulversuche zur Spaltung von Saccharose mit Seliwanoff-Probe, Fehling und GOD-Test

                      färbt sich rosa                                      roter Niederschlag                         positiv

                      enthält Fructose                                   Aldehydgruppe                             Glucose

     

     Reaktionsschema zur Spaltung von Saccharose in alpha-D-Glucose und alpha-D-Fructose

    Unter Hydrolyse versteht man einen Vorgang, bei dem Atombindungen unter Aufnahme von Wasser gespalten werden (Bsp. Esterspaltungen).

    Wichtig: die leichte Hydrolisierbarkeit spricht für eine Verknüpfung über Sauerstoff.

     

     Schemaskizze Glucose und Fructose

     

    4.2.5 Invertzucker

    Saccharose dreht die Ebene des polarisierten Lichts nach rechts. Während der Hydrolyse (durch verdünnte Salzsäure oder Ferment/Enzym Invertase) nimmt die Drehung fortwährend ab und geht in eine Linksdrehung über:

    Saccharose +      Wasser       →       D-Glucose    +        D-Fructose
     +66°         +         0°                     + 54,7                    - 92,4

    Zahlenwerte αsp in ml/(g • dm)

    Man bezeichnet daher diese Spaltung als Inversion des Rohrzuckers und das entstehende Gemisch als Invertzucker.

    Inversion: Vorzeichenwechsel der optischen Aktivität im Verlauf einer Reaktion optisch aktiver Verbindungen.

  • 5.4.3 Polysaccharide

    • Wichtigsten Beispiele: Stärke, Glykogen (tier. Stärke), Cellulose
    • Funktion: Speicher- und Gerüstsubstanz
    • Monomere der genannten Beispiele: Glucose; unterschiedl. Verknüpfung

    4.3.1 Stärke

    a) Vorkommen

    • Pflanzen (Speicherstoff, osmotisch nicht wirksam)
    • Nahrungsmittel (Brot, Teigwaren, Kartoffel, usw.), 

    b) Aufbau eines Stärkemoleküls:

    Strukturformel in Haworth-Projektion von Amylose - Staerke




    c) Bau: α-D-Glucose – Stärkekorn

      Amyolse Amylopektin
    Anteil: (10-30%)  (70-90%)
    Bau:

     linearen Ketten (helikaler

    (Schrauben-)Struktur)

    stark verzweigten Strukturen
    Verknüpfung α-1,4-glykosidisch

    α-1,4-glykosidischen
    α-1,6-glykosidischen 

    Löslichkeit in heißem Wasser kolloidal löslich  unlöslich
    Mit I2 bildet es __ Lösung blaue violette
    Im Stärkekorn Hülle Innen


    d) Nachweis: Iodstärke-Reaktion

    Versuch: Zu einer Stärkelösung gibt man ein paar Tropfen einer Lösung von Iod in Kaliumiodid (Iod-Kaliumiodid-Lösung, Lugolsche Lösung) Elementares Iod ist in Wasser kaum löslich. Liegen jedoch schon gelöste Iodid-Ionen vor, löst sich das Iod unter Bildung von Polyiodidionen:

    2 I2 + I-  →   I3-  +   I2   →  I5-

    Beobachtung: Lösung wird tiefblau
    Beim Erhitzen wird die Lösung hell, beim Abkühlen wieder tiefblau

    Erklärung: Die Stärkemoleküle sind spiralig angeordnet, in den entstehenden Hohlraum lagern sich Jodmoleküle ein die dort durch van-der-Waals-Kräfte gebunden werden. Eine blaue Iod-Stärke-Einlagerungsverbindung bildet sich. Das gelbe Licht wird absorbiert, die Lösung erscheint blau. Beim Erhitzen nimmt die Beweglichkeit der I2-Moleküle zu, so dass beim Erhitzen eine Entfärbung eintritt.

     

     

    Eigenschaften von Stärke (Amylose) 

    • in kaltem Wasser: unlöslich
    • heißem Wasser: löslich 
    • schmeckt nicht süß
    • kolloide Lösung (Kolloide: Moleküle oder Aggregate, die sich aus etw. 103 bis 109 Atomen zusammensetzt und in einem Dispersionsmittel verteilt sind).

     

    Versuch:  


    Versuchsaufbau zum Tyndall-Effekt einmal Kochsalzlösung und einmal Stärkelösung
     



    Beobachtung:
    Im Gegensatz zu NaCl-Lösung ist der Verlauf des Lichtes in der Stärkelösung sichtbar (= Tyndall-Effekt).

    Erklärung:
    Gebündeltes Licht wird beim Durchgang durch kolloid- oder molekulardisperse Systeme gestreut (d.H. jedes Teilchen streut einen Teil des auftreffenden Lichtes in alle Richtungen des Raums. Dieser von Tyndall 1868 erstmals untersuchte Effekt tritt immer dann auf, wenn Teilchen vorliegen, deren Größe etwa der Wellenlänge des Lichtes entsprechen. Solche Teilchen haben einen Durchmesser von 1 bis 1000 nm.

    van-der-Waals-Kräfte/strong

  • 4.3.2 Cellulose

    Vorkommen: Cellulose ist das in der Natur am häufigsten auftretende Kohlenhydrat. Sie ist die Gerüstsubstanz in der Pflanzenwelt. 
    z.B.: Baumwolle, Flachs, Hanf (fast 100%); Stroh (30%); Holz (40-50% Cellulose).

    Eigenschaften: Cellulose ist eine weiße, in Wasser und in den meisten organischen Lösungsmitteln unlösliche Substanz. 

    Hydrolyse der Cellulose:
    a) Versuch: Filterpapierschnitzel werden mit konz. Salzsäure übergossen. Diese Mischung gibt man in 50 mL Wasser und erhitzt etwa 10 Minuten.
    Anschließend wird die Fehlingsche Probe durchgeführt.

    Beobachtung: roter Niederschlag

    b) Versuch: GOD-Test mit der hydrolisierten Cellulose.
    Beobachtung: Grünfärbung des Teststreifens.

    Folgerung: Cellulose enthält als Baustein D-Glucose.



    c) Versuch: Dünnschichtchromatographie
    Ein Chromatogramm gibt genauen Aufschluss über die Bausteine: Glucose. Bei vorsichtiger Hydrolyse ist außer β-D-Glucose auch noch Cellobiose nachweisbar (Cellobiose ist ein Disaccharid aus 2 ∙ β-D-Glucosemolekülen). 

    Aufbau eines Cellulosemoleküls  


    Lewis-Formel in der Haworth-Projektion - Cellulosemolekül



    Cellobiose

    Ausschließlich β-(1,4)-glycosidische Bindung

    Bei der Cellulose handelt es sich um fadenförmig gestreckes Makromoleküle. Diese Makromoleküle lagern sich zu Elementarfibrillen zusammen (H-Brücken). 


    4.3.3 Unterschied: Cellulose – Stärke

    a) Räumlich unterschiedliche Verknüpfung der Glucoseringe in den Makromolekülen

    Cellulose:                (-Glu-Glu-Glu-Glu- verknüpft  β 1→4)
    Stärke (z.B. Amylose) (-Glu-Glu-Glu-Glu-  verknüpft  α 1→4 )

    b) Unterschiedliche Anordnung der Makromoleküle

    Cellulose: langgestreckte, unverzweigte Kettenmoleküle
    Stärke: verzweigte Kettenmoleküle, die spiralig aufgerollt sind.

    c) Unterschiedliche Molekülmasse

    Cellulose: bis 1,8 Millionen u
    Stärke: bis 50 000 u

    4.3.4 Verwendung der Cellulose

    Nahrungsmittel: Der Mensch kann β-1,4-Bindungen der Cellulose nicht abbauen ( → Ballaststoffe). 
    Im Dickdarm schaffen das anaerobe Bakterien

    →  Umwandlung in Fettsäuren → Resorption. 
    Kühe: Pansen: Mikroorganismen →  Celluloseverdauung
    Pferde u.a. Dickdarm
    Einige Pilze und Silberfischchen (eine der wenigen Tiere mit eigenen Cellulasen). 
    Wichtigste Textilfasern: Baumwolle.
    Aus Hanf, Flachs, Jute werden Leinen, Säcke, Segeltuch, Matten usw. hergestellt.
    Papier



    4.3.4 Derivate der Cellulose


    a) Cellulose – Kunstseiden

    b) Schießbaumwolle (Christian Friedrich Schönbein, Metzinger Chemiker, geb. 1799).
    Schießbaumwolle ist Cellulosenitrat (fälschlicherweise als Nitrocellulose bezeichnet).

    Herstellung der Schießbaumwolle: 20 mL konz. H2SO4 + 10 ml rauchende HNO3 zur Kühlung kaltes Wasserbad; 2 g Watte dazugeben und mit Galsstab umrühren. Nach 10 Minuten wird die veresterte Watte nur gut mit Wasser ausgewaschen und anschließend im Exsikkator getrocknet.
    Schießbaumwolle ist Grundlage für raucharmes Schießpulver, welches das Schwarzpulver ersetzte.  z.T. mit Nitroglycerin versetzt dient die Schießbaumwolle als Sprengmittel mit einem Initialzünder.

    erbrennung
    Normale Watte, die fast ausschließlich aus Cellulose besteht, ist nur schwer brennbar. Schießbaumwolle verbrennt explosionsartig mit einer Stichflamme. Bei der Verbrennung der Schießbaumwolle werden große Mengen stabiler Gase frei, die durch ihre Ausdehnung zu einer Druckwelle führen, die typischerweise eine Explosion begleitet. Die entstandenen Gase sind Stickstoff (N2), Stickoxide (NOx) , Kohlenstoffmonoxid (CO), sowie Kohlendioxid (CO2).

    Reaktionsgleichung der Herstellung von Nitriersäure

    Summenformeln:

    2 H2SO4 + HNO3 → NO2+ + H3O1+ + HSO41- 

    Herstellung von Schießbaumwolle

     Strukturformel - Lewis-Formel - Haworth-Projektion - Schiessbaumwolle - Cellulosenitrat

  • 5.1.3 Formelermittlung von Ethanol

    I. Qualitative Elementaranalyse

    Versuch 1: Verbrennungsanalyse

     05 01 03 verbrennungsanalyse

    • Ethanol verbrennt zu Wasser und Kohlenstoffdioxid;
    • Nachweis von CO₂: Kalkwasser (weißer NS)
    • Nachweis von H₂O: Watesmo-Papier wird blau

    1. Ergebnis: Ethanol enthält somit zumindest C und H.


    Versuch 2: Ethanol reagiert mit Magnesium - Sauerstoffnachweis

    Versuchsaufbau: Ethanol reagiert mit Magnesium - Sauerstoffnachweis

    Durchführung: 

    1. Aufbau siehe Abbildung
    2. Zunächst wird das Magnesiumband zum Glühen gebracht
    3. Danach verdampft man den Alkohol, der über das glühende Magnesiumband streicht. 

    Beobachtung:

     Sobald Ethanol über das glühende Magnesiumband streicht glüht dieses heller auf und es bleibt ein kristalliner weißer Feststoff (Magnesiumoxid) übrig. 

    Ergebnis:

    • Ethanol reagiert mit Magnesium u.a. zu Magnesiumoxid
    • Ethanol enthält zumindest C, H und O.

    II. Molekülmassenbestimmung (Verdampfungsmethode)

    Hinweis: Dieser Versuch nur bei ausreichender Zeit durchgeführt. Nicht wundern, falls ihr das nicht im Heft stehen habt (dann kommt es auch in der Klausur nicht dran). 

    Literaturwert: M(Ethanol) = 46 g/mol.

     

    _______________

    SATP-Bedingungen (Standard Ambient Temperature and Pressure)

     

  • III. Quantitative Elementaranalyse

    46g Ethanol ergeben bei der Verbrennung 88 g CO₂ und 54 g H₂O

    • in 2 mol CO₂ sind 2 mol C (24g) enthalten
    • in 3 mol H₂O sind 6 mol H (6g) enthalten

    46 g Ethanol enthalten somit 2 mol C (24g) und 6 mol H (6g) und 1 mol (16g). 
    Atomzahlverhältnis im Ethanol: C : H : O = 2 : 6 : 1
    Verhältnisformel: C₂H₆O₁
    Molekülformel: C₂H₆O (Molekülmasse = 46u)

    IV. Ermittlung der Strukturformel von C₂H₆O
    Zwei Möglichkeiten:

     04 ta strukturformel ethanol        04 ta methylether 
     Struktur a   Struktur b
    Hier hat das Wasserstoffatom eine Sonderstellung, da es durch die polare Atombindung mit Sauerstoffatom stark positiviert ist   Alle Wasserstoffatome sind gleich gebunden. Sie sind nicht (oder kaum) positiviert 
       ZMK  

     Hoher Siedepunkt: 

    • Wasserstoffbrückenbindung
    • Dipol-Dipol-Wechselwirkung
    • van-der-Waals-Kräfte
     

     "Normaler" Siedepunkt (bei Zimmertemperatur gasförmig): 

    • nur van-der-Waals-Kräfte
         
    Ethanol könnte (wie Wasser) als schwache Säure reagieren.     


    Wichtig: Ethanol und Dimethylether sind Derivate (Abkömmlinge) des Wassers.

    Beide Strukturen leiten sich vom Wasser ab, jedoch ist Struktur a wasserähnlicher. 

    Abkömmlinge des Wassers 


    R1 = - C₂H₅ (Ethylrest)
    R2 = - CH₃ (Methylrest)
    Siedepunkt: Struktur a +78°C und Struktur b -25°C

    Um herauszufinden, welche dieser Strukturen auf Ethanol zutrifft bitte nächste Seite anschauen.